# Fundamentals of Complex Analysis by Saff, E. B. and A. D. Snider Pdf Free Download

By | August 5, 2017

Fundamentals of Complex Analysis by Saff, E. B. and A. D. Snider Pdf Free Download is one of the important books for Engineering Students. This book is useful for Electrical and Communication Engineering Students. Here we are provding this book in Pdf Format for Free Download. The authors Saff, E. B. and A. D. Snider Clearly explained about Fundamentals of Complex Analysis book by using simple language. This Book will also useful to most of the students who are preparing for Competitive Exams.

## Book Description of Fundamentals of Complex Analysis by Saff E. B. and A. D. Snider

This book provides a comprehensive introduction to complex variable theory and its applications to current engineering problems and is designed to make the fundamentals of the subject more easily accessible to readers who have little inclination to wade through the rigors of the axiomatic approach. Modeled after standard calculus books–both in level of exposition and layout–it incorporates physical applications throughout, so that the mathematical methodology appears less sterile to engineers. It makes frequent use of analogies from elementary calculus or algebra to introduce complex concepts, includes fully worked examples, and provides a dual heuristic/analytic discussion of all topics. A downloadable MATLAB toolbox–a state-of-the-art computer aid–is available. Complex Numbers. Analytic Functions. Elementary Functions. Complex Integration. Series Representations for Analytic Functions. Residue Theory. Conformal Mapping. The Transforms of Applied Mathematics. MATLAB ToolBox for Visualization of Conformal Maps. Numerical Construction of Conformal Maps. Table of Conformal Mappings. Features coverage of Julia Sets; modern exposition of the use of complex numbers in linear analysis (e.g., AC circuits, kinematics, signal processing); applications of complex algebra in celestial mechanics and gear kinematics; and an introduction to Cauchy integrals and the Sokhotskyi-Plemeij formulas. For mathematicians and engineers interested in Complex Analysis and Mathematical Physics.

1. Complex Numbers.

2. Analytic Functions.

3. Elementary Functions.

4. Complex Integration.

5. Series Representations for Analytic Functions.

6. Residue Theory.

7. Conformal Mapping.

Appendix A. Numerical Construction of Conformal Maps.

Appendix B. Table of Conformal Mappings.